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Statistical Approaches to Gene Mapping
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Introduction

In this brief primer, we hope to provide a general over-
view on statistical methods for disease-gene mapping.
Of course, this cannot be complete—our apologies to
researchers whose methods are not mentioned below.
More-detailed information may be found in relevant
textbooks (Ott 1999) and at the Web Resources of Ge-
netic Linkage Analysis site (Laboratory of Statistical Ge-
netics, Rockefeller University). The main purpose of this
primer is to present, in a nontechnical manner, the meth-
odological background and rationale of genetic mapping
and to relate the various approaches to each other. In
addition, current analysis methods for analysis of mi-
croarray data are discussed. Microarray data represent
a new type of information that can provide important
insight about the interaction of genes and that thus can
complement the statistical approaches to gene mapping.

Statistical genetic-mapping methods all rest on one
biological phenomenon, recombination (crossing-over),
which is exploited for the purposes of determining the
genetic distance—or at least the closeness—between two
loci. Crossovers between homologous chromosome
strands occur semirandomly. Loci in close proximity to
each other will rarely be separated by a recombination,
whereas, for distant loci, recombinations occur as often
as not. This phenomenon is used to derive a statistical
measure of genetic distance. In family pedigrees, recom-
binations may be seen more or less directly; on the other
hand, the consequences of recombinations in past gen-
erations can be observed in the form of linkage dis-
equilibrium—that is, the preferential occurrence, in one
gamete, of specific alleles at different loci.

Genetic-Linkage Analysis

Throughout the human chromosomes, genetic maps
have been created that consist of a dense set of genetic
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marker loci—that is, loci with a known Mendelian mode
of inheritance. In the early days of genetic mapping,
enzyme and blood-group polymorphisms served as ge-
netic markers. They now have all but been replaced by
DNA polymorphisms, which have the advantage of lack-
ing functional significance. The newest type of genetic
marker is the single-nucleotide polymorphism (SNP), of
which many thousands are likely to be identified.

To localize on the human gene map a simple (recessive
or dominant) Mendelian disease gene, the most straight-
forward approach is to investigate haplotypes passed
from parents to offspring—that is, sequences of alleles,
at different loci, that are transmitted from a parent in
one gamete. For example, a parent may be heterozygous
for a recessive disease whose gene resides on a given
chromosome. One of his chromosomes then carries a
disease allele and the other (homologous) chromosome
carries a normal allele. Inspection of haplotypes in the
family may reveal which of the two chromosomes (hap-
lotypes) carries the disease allele. When a chromosome
transmitted from parent to child exhibits a crossover,
the disease locus must be above or below the crossover.
Because an affected child must have received that chro-
mosomal portion containing the disease locus, the lo-
cation of the disease gene is then known to be on one
or the other side of the crossover; for an example, see
figure 1 in an article by Plasilova et al. (1998). Multiple
such observations eventually allow one to localize the
disease gene to a small interval between marker loci.

Because of incomplete penetrance of disease genes,
missing individuals, etiologic heterogeneity, and var-
ious other complications, the haplotype approach to
disease-gene mapping is often not applicable. The
method of choice is then an estimation of the disease
locus, an estimation based on marker and disease
phenotypes. The statistical principle employed is that
of maximum likelihood estimation, where the like-
lihood is the probability of occurrence of the data,
given assumed parameter values. On the basis of some
or all markers on a chromosome, computer programs
such as LINKAGE (Lathrop et al. 1984), MENDEL
(Lange et al. 1988), VITESSE (O’Connell and Weeks
1995), ASPEX (Schwab et al. 1995), GENEHUNTER
(Kruglyak et al. 1996), or ALLEGRO (Gudbjartsson
et al. 2000) can compute this likelihood for any as-
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sumed position of the disease locus. The likelihood
is of intrinsic value only in comparison with the like-
lihood that is obtained under the assumption that the
disease locus is off the marker map. For this reason,
likelihoods are generally transformed into so-called
LOD scores and are graphed across the human gene
map. A LOD score is the decimal logarithm of the
likelihood ratio, with an assumed disease position in
the numerator and with assumed absence of the dis-
ease locus in the denominator. Peaks on the LOD-
score curve that exceed some threshold, such as 3,
identify potential locations of disease genes. For
background information on this methodology, see the
review by Nyholt (2000 [in this issue]) and the work
of Ott (1999).

Linkage analysis methods fall into two broad class-
es—parametric and nonparametric approaches. Meth-
ods in the first class require specification of the mode
of trait inheritance—for example, values for pene-
trances, recombination fractions, heterogeneity param-
eters, and so on. If good estimates for these parameters
are known, then parametric linkage analysis is very
powerful. For many diseases (particularly in the case of
complex traits; see below), it may not be desirable or
possible to specify parameter values for Mendelian in-
heritance; so nonparametric methods are appealing for
these traits. Methods in this class do not make as-
sumptions about the mode of inheritance of the trait
but rely entirely on the known modes of marker inher-
itance. Rather sophisticated nonparametric approaches
have been implemented in several computer programs.
Some of these approaches estimate allele sharing and
represent results in the form of LOD scores, which may
be graphed along the genome, as in the case of para-
metric linkage analysis. Many nonparametric methods
are equivalent to parametric methods. For example, a
particular form of the affected-sib-pair analysis has a
1:1 correspondence of LOD-score analysis for a fully
penetrant recessive disease (Knapp et al. 1994). Thus,
nonparametric methods often can be emulated by stan-
dard linkage programs (Goring and Terwilliger 2000).

Likelihood (LOD score) calculations are generally
carried out recursively; that is, the data are split into
suitable subsets, and calculations are performed on one
subset at a time, with the results attached to the next
subset, and so on. This allows for large data sets to be
processed in a sequential manner. Two types of recursive
procedures are in common usage: (1) recursion over
family members in a pedigree (a procedure in which all
loci are considered at once) and (2) recursion over loci
(a procedure in which all family members are considered
jointly). The first type of procedure (the Elston-Stewart
[Elston and Stewart 1971] algorithm and related pro-
cedures) can handle large pedigrees but only up to a
handful of loci at a time and is implemented in programs
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such as LINKAGE. The second approach (the Lander-
Green [Lander and Green 1987] algorithm) can work
on large numbers of loci but only on small numbers of
family members at a time; it is implemented, for ex-
ample, in the GENEHUNTER and ALLEGRO pro-
grams. Currently, there is no exact likelihood-calcula-
tion method that can process both large numbers of loci
and large numbers of family members. Approximate
methods to do this do exist and are based on Monte
Carlo Markov-chain methods (e.g., see Heath 1997,
1998). Rather than evaluating all genotypes compatible
with the observations, these methods infer, on the basis
of phenotypes, a suitable number of underlying geno-
types and work on this reduced set of genotypes.

Most methodological developments in recent years
have focused on more-efficient likelihood calculations
and on the development of nonparametric methods
based on allele sharing. Approaches of the latter type
have found much use for complex traits (see below).
Another new development makes use of a peculiar prop-
erty of genomewide LOD-score curves for families se-
lected to contain affected individuals (Terwilliger et al.
1997)—this property is that true peaks tend to be wider
than false peaks. In likelihood theory, the only relevant
quantity from this analysis is the peak height, but the
article discussing this approach suggests that the width
of the LOD-score curve should provide extra power for
localization of disease genes. Several ad hoc methods
have been proposed to make use of this phenomenon
(Goldin and Chase 1997; Goldin et al. 1999). A com-
prehensive approach for capturing the effects of the
height and the width of the LOD score may be effected
by means of scan statistics (authors’ unpublished data).
In this statistic, one considers 7 consecutive markers and
calculates the sum of the LOD scores at these markers.
The maximum sum over all possible sets of 7 consec-
utive marker loci is called the “linear scan statistic of
length 7.” Scan statistics provide greatly improved
power over regular LOD-score analysis (authors’ un-
published data) and, presumably, will see much use in
the near future.

Disequilibrium Mapping

Linkage analysis is based on recombination and requires
the analysis of family data. Other methods of gene map-
ping do not assess recombination in observed data but,
rather, exploit the consequences of recombination that
has occurred between a mutation and a marker some
time ago. These methods can work on unrelated indi-
viduals and make use of unobserved recombinations in
previous generations.

Consider a protein-encoding gene and an SNP (with
alleles 1 and 2) in its immediate vicinity. If a mutation
occurs at this locus, the mutated allele (often called “the
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disease allele” or “the mutation”) will be in coupling
with a specific marker allele—for example, the 1 allele.
Offspring of the individual in whom the mutation oc-
curred may then receive the disease allele along with
the 1 allele. Through recombination between the disease
and marker loci, the disease allele may eventually occur
in coupling with the 2 allele, but, for many generations
to come, the disease allele will tend to be associated
with the 1 allele much more frequently than with the 2
allele. This situation is referred to as “linkage disequi-
librium” (LD) or “allelic association.” When an equi-
librium situation is reached, the proportion of 1 alleles
in coupling with the disease allele is the same as the
corresponding proportion of 2 alleles, which is just the
population frequency of the disease allele. In the absence
of such disturbing forces as mutation and selection, un-
der random mating, genotype frequencies are entirely
determined by allele frequencies. This situation is re-
ferred to as “Hardy-Weinberg equilibrium” (HWE).
Genotypes of marker loci generally are in HWE, and
deviations from it are, in many laboratories, taken as
evidence for a technical problem. However, when no
such problems exist, deviations from HWE may be in-
dicative of genetic association of the given marker with
a disease gene, or LD (Nielsen et al. 1998).

LD may be detected, for example, in a case-control
study. Consider a sample of individuals affected with a
particular trait (“cases”) and a number of individuals
without the trait (“controls”). Allele frequency differ-
ences between the populations, for a given marker, are
evidence for LD. LD may occur as a consequence of
population admixture, but strong effects of LD are gen-
erally interpreted as being indicative of tight genetic
linkage. Depending on the history of a population, LD
is seen over varying distances from a disease gene. For
large outbred populations, LD generally extends only
up to 0.3 ¢cM (Collins et al. 1999; Ott 2000). LD may
span much larger distances in special populations—that
is, populations with a small number of founders and
subsequent rapid expansion—or in small stable popu-
lations (Terwilliger et al. 1998). One such population
is the Afrikaans-speaking population of South Africa,
in whom the LD between marker loci can extend over
multiple centimorgans (Gordon et al. 2000). Because of
its short range in large populations, LD is often advo-
cated as a method for fine mapping once an approxi-
mate location for a disease gene has been found by
linkage analysis. Clearly, it is important that control
individuals be carefully matched to case individuals in
these studies; without proper matching of populations,
spurious results may be produced by this analysis, be-
cause of population stratification.

Rather than such population controls, family-based
methods for LD analysis include internal controls (Falk
and Rubinstein 1987; Ott 1989; Thomson et al. 1989;
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Terwilliger and Ott 1992; Spielman and Ewens 1996).
These approaches rest on a comparison of marker alleles
transmitted by a parent to an affected offspring (“case”
alleles) versus those alleles not transmitted by the parent
(“control” alleles). The typical family structure for these
types of analyses is a family “trio” consisting of two
parents and an affected offspring. An important differ-
ence between linkage analysis and LD analysis is that,
in the former, no attention is paid to the identities of
the alleles that occur in recombinant or nonrecombinant
haplotypes, whereas, in LD analysis, association be-
tween disease status and specific marker alleles is inves-
tigated.

Special analysis methods for family-based control
data have been developed—in particular, the transmis-
sion/disequilibrium test (TDT) (Spielman and Ewens
1996). The TDT allows for multiple affected offspring
and is a test for linkage in the presence of LD; without
LD, it has no power. Currently, however, many scientists
are of the opinion that the potentially damaging effect
of population stratification may have been overesti-
mated and that family-based control data are less effi-
cient for detection of LD than are case-control studies
(Morton and Collins 1998). Several additional methods
for LD mapping have been developed. For example,
Boehnke and Langefeld (1998) have introduced several
family-based tests of association that use discordant sib
pairs, in which one sib is affected with a disease and
the other sib is not.

Localization of Complex-Trait Genes

Many traits are clearly heritable yet do not follow a
known Mendelian pattern of inheritance. In contrast to
Mendelian diseases, these complex traits are rather com-
mon and presumably are due to multiple interacting
genes, thus making genetic analysis more difficult. Be-
cause the inheritance pattern is not understood, re-
searchers often prefer nonparametric methods to search
for genes underlying complex traits. On the other hand,
one may apply standard parametric linkage-analysis
methods under a suitable assumed-inheritance model for
the trait. Then, the question concerns what consequences
incorrect model assumptions have on the results. Much
methodological research has gone into investigation of
such questions. In general, incorrect penetrance as-
sumptions are not serious as long as recessive-like traits
are analyzed under a recessive mode and dominant-like
traits are analyzed under a dominant mode of inheri-
tance. Thus, parametric analyses often are analyzed un-
der a small number of different model assumptions and
may then be at least as powerful as nonparametric anal-
yses (Abreu et al. 1999).

The threshold for significance in the analysis of com-
plex disease is currently under debate. In a genome scan,
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a statistical test for linkage or association is essentially
carried out for each marker. There is then a question
of the appropriate marker-specific significance level such
that the overall (genomewide) false-positive rate (type
1 error) is not, say, >5%. For a time, it appeared that
this question had to be answered differently for Men-
delian and complex diseases. However, under statistical
testing theory, the false-positive rate is the proportion
of significant results, given absence of any disease genes,
and Lander and Kruglyak (1995) have proposed cor-
responding rigorous locus-specific significance levels. As
it turns out, obtaining significant evidence for the lo-
calization of genes in complex traits is very difficult. It
appears that sample-size requirements for localization
of genes underlying complex traits are much higher than
those for Mendelian disease genes (Suarez et al. 1994;
Lernmark and Ott 1998). This seems to have resur-
rected previous demands that, when it comes to the
establishment of significance levels, complex traits be
treated differently than Mendelian diseases, the main
argument being that no researcher will search for genes
in a trait that is not known to be genetic. But, under
statistical test theory, P values are independent of the
presence of disease genes. Both sides of this argument
have good reasons for their beliefs. However, if re-
searchers investigate traits only when they are known
to be genetic, and if this allows them to lower the thresh-
old for significance, then the threshold should apply to
both complex and Mendelian traits; but this argument
is not generally invoked for Mendelian disorders.

As discussed so far, analysis methods are not intrin-
sically different for complex and Mendelian traits. Ge-
nome screens still proceed essentially by testing one
marker at a time, where informativeness at a marker
may be enhanced by information gleaned from neigh-
boring markers (in “multilocus analysis,” “multi” gen-
erally refers to multiple markers, not to multiple disease
genes). The specific multigenic nature of complex traits
is not usually a factor in the statistical analysis. It is
only recently that methods of multigene analysis have
begun to be proposed—for example, by Cordell et al.
(2000).

The prospect of the availability of thousands of SNPs
densely spaced on the human gene map has led several
research groups to collect large numbers of individuals
affected with a complex trait. Massive case-control
studies and studies with quantitative outcomes are
planned. This poses interesting statistical problems. In
principle, for a complex trait, marker genotypes should
be analyzed jointly with disease phenotypes, but the
potentially very large number of markers renders this
impossible. Thus, two-stage procedures have been pro-
posed such that an initial stage of marker selection is
followed by a statistically sophisticated multivariate
analysis of marker and trait phenotypes (Hoh et al., in
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press). For that second stage, pattern-recognition meth-
ods may be applied—for example, logistic regression or
artificial neural networks (Lucek at al. 1998).

Microarray Expression Data

Linkage and association mapping have their limits in
dealing with complex traits. To find interactions among
large numbers of genes is highly desirable yet difficult
to accomplish with these methods. A new type of data,
generated using microarray(biochip)-based technologies,
promises to provide an extensive view of biological in-
formation on the interplay of genes in the entire genome.
Research into analytical methods and computer algo-
rithms to facilitate the interpretation of microarray data
is currently a very active area.

High-throughput microarray data usually consist of
expression levels of thousands of genes, each possibly
measured under various experimental conditions. Sev-
eral clustering algorithms are now available to classify
the entire set of genes into hierarchical subsets. As a
result, genes with similar patterns of expression are
grouped together, where similarity may be based on the
Euclidean distance of the observations in the multivar-
iate data space, a sample standard correlation coefficient
(Eisen et al. 1998), or other appropriate metric systems.
In general, clustering methods can be divided into two
classes: unsupervised and supervised. The key difference
between the two approaches is that the supervised
method classifies genes on the basis of some reference
information, such as groups of genes known to be coreg-
ulated. An example of the supervised method is support-
vector machines, a computer-learning method (Brown
et al. 2000). In contrast, the unsupervised method relies
on no prior knowledge of biological functions. Since
little is known about the biological properties of the
genes assayed in most microarray experiments, unsu-
pervised clustering is often chosen as the first step of
the analysis. One can follow this by a supervised
method, which may be referred to as “hybrid cluster-
ing,” to increase resolution (Getz et al. 2000).

Another important aspect of organizing the microar-
ray expression data by clustering methods is that it may
be done in two directions (two-way clustering), both
having biological meaning: clustering with respect to
the genes across the experimental conditions and clus-
tering with respect to the experimental conditions over
all the genes (Alon et al. 1999). The existing algorithms
for two-way clustering separately perform clustering of
genes and of conditions and then combine the results,
for a graphic representation. A more challenging task
is the clustering on genes and on conditions at the same
time (two-dimensional clustering). To this end, a pro-
cedure proposed by Hastie et al. (2000) is the only
method available at the time of the writing of the present
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review (the computer algorithm is available on the Soft-
ware site of the Laboratory for the Statistical Analysis
of Microarray Data, Stanford University).

Clustering is employed under the presumption that
data are “clean”—that is, background noise has been
eliminated, outliers are detected, variance is stable
across arrays for each gene, intensities are measured on
the same scale, missing data are imputed correctly, and
so on. It is difficult to overemphasize the importance of
scrutinizing the data before the application of analysis
methods. In doing so, one must understand the nature
of the data, which is outlined briefly. Basically, there are
currently two types of DNA microarrays—(1) cDNA
arrays and (2) oligonucleotide arrays. In cDNA arrays,
thousands of short-length DNAs are spotted onto glass
microscope slides by a robotic spotter. These DNAs rep-
resent fragments of known or unknown genes. From
cells of interest, mRNA is extracted and converted to
c¢DNA, with the introduction of a fluorescent label. The
fluorochrome-tagged cDNAs are then hybridized to the
DNA spots on the slide. The intensity of fluorescence
on each spot is detected with a laser and is recorded
with a microscope. On the other hand, oligonucleotide
arrays contain chemically synthesized 25-mer (this num-
ber may have a range of 20-50) DNA oligonucleotides
whose sequences are known. The oligonucleotides are
deposited on silicon chips and are used for both the
subsequent hybridization with the experimental samples
and the data-recording process. Data handling for these
two types of arrays is similar, mainly because variations
in expressions among oligonucleotides for each gene are
overlooked. However, ignoring this variation could po-
tentially be detrimental, so future analysis methods will
have to examine its effects further.

Outlook

Despite major efforts by researchers and good support
by the National Institutes of Health, success in the lo-
calization of complex-trait genes has been rather modest.
Although there may have existed some unwarranted en-
thusiasm in the initial phases of these efforts (Terwilliger
and Weiss 1998), we are convinced that eventually the
current large investments of time and effort will pay off.
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